自动识别系统(AIS)消息对于使用无线电链路和卫星收发器在全球范围内跨海的血管活动很有用。这样的数据在跟踪血管活性和映射迁移率模式(例如捕鱼中发现)中起着重要作用。因此,本文提出了一种几何驱动的半监督方法,用于从AIS数据中检测捕捞活动。通过提出的方法,我们展示了如何探索消息中包含的信息,以提取描述船舶路线几何形状的特征。为此,我们利用了聚类分析的无监督性质来标记轨迹几何形状,突出了往往表明捕鱼活动的容器运动模式的变化。建议的无监督方法获得的标签用于检测捕鱼活动,我们将其作为时间序列分类任务进行。在这种情况下,我们在AIS数据流上使用复发性神经网络提出了一个解决方案,该解决方案大约是50种不同看不见的渔船的整个轨迹的总$ F $分数的87%。此类结果伴随着广泛的基准研究,该研究评估了不同复发性神经网络(RNN)体系结构的性能。总之,这项工作通过提出一个详尽的过程来做出贡献,其中包括数据准备,标签,数据建模和模型验证。因此,我们提出了一种新颖的解决方案,用于迁移模式检测,该解决方案依赖于时间上展开轨迹并观察其固有的几何形状。
translated by 谷歌翻译
海洋是令人印象深刻的复杂数据混合的来源,可用于发现尚未发现的关系。此类数据来自海洋及其表面,例如用于跟踪血管轨迹的自动识别系统(AIS)消息。 AIS消息以理想的定期时间间隔通过无线电或卫星传输,但随着时间的流逝而变化不规则。因此,本文旨在通过神经网络对AIS消息传输行为进行建模,以预测即将到来的AIS消息的内容,尤其是在同时方法的情况下,尽管消息的时间不规则性作为异常值。我们提出了一组实验,其中包含用于预测任务的多种算法,其长度不同。深度学习模型(例如,神经网络)表明自己可以充分地保留血管的空间意识,而不管时间不规则。我们展示了如何通过共同努力来改善此类任务的卷积层,进料网络和反复的神经网络。尝试短,中和大型消息序列,我们的模型达到了相对百分比差异的36/37/38% - 越低,越好,而我们在Elman的RNN上观察到92/45/96%,51 /52/40%的GRU,LSTM的129/98/61%。这些结果支持我们的模型作为驱动器,以改善在时间噪声数据下同时分析多个分歧类型的血管时,可以改善船舶路线的预测。
translated by 谷歌翻译
知道如何在搜索引擎(SES)(例如Google或Wikipedia)中构建基于文本的搜索查询(SQS)已成为一项基本技能。尽管可以通过此类SE提供大量数据,但大多数结构化数据集都生活在其范围之外。可视化工具有助于这一限制,但是没有这样的工具接近通过通用SES获得的大量信息。为了填补这一空白,本文介绍了Q4EDA,这是一个新颖的框架,可转换用户在时间序列的视觉表示上执行的视觉选择查询,提供有效且稳定的SQS,可用于通用SES和相关信息的建议。用户通过将Gapminder的线条复制品与填充有Wikipedia文档的SE联系起来的应用程序来介绍和验证Q4EDA的实用性,并显示了Q4EDA如何支持和增强联合国世界指标的探索性分析。尽管有一些局限性,Q4EDA在其建议中仍然是独一无二的,它代表了提供基于用户与视觉表示的用户交互来查询文本信息的解决方案的真正进步。
translated by 谷歌翻译
Large-scale models combining text and images have made incredible progress in recent years. However, they can still fail at tasks requiring compositional knowledge, such as correctly picking out a red cube from a picture of multiple shapes. We examine the ability of CLIP (Radford et al., 2021), to caption images requiring compositional knowledge. We implement five compositional language models to probe the kinds of structure that CLIP may be using, and develop a novel training algorithm, Compositional Skipgram for Images (CoSI), to train these models. We look at performance in attribute-based tasks, requiring the identification of a particular combination of attribute and object (such as "red cube"), and in relational settings, where the spatial relation between two shapes (such as "cube behind sphere") must be identified. We find that in some conditions, CLIP is able to learn attribute-object labellings, and to generalize to unseen attribute-object combinations. However, we also see evidence that CLIP is not able to bind features together reliably. Moreover, CLIP is not able to reliably learn relations between objects, whereas some compositional models are able to learn these perfectly. Of the five models we developed, none were able to generalize to unseen relations.
translated by 谷歌翻译
The usage of deep neural networks in safety-critical systems is limited by our ability to guarantee their correct behavior. Runtime monitors are components aiming to identify unsafe predictions and discard them before they can lead to catastrophic consequences. Several recent works on runtime monitoring have focused on out-of-distribution (OOD) detection, i.e., identifying inputs that are different from the training data. In this work, we argue that OOD detection is not a well-suited framework to design efficient runtime monitors and that it is more relevant to evaluate monitors based on their ability to discard incorrect predictions. We call this setting out-ofmodel-scope detection and discuss the conceptual differences with OOD. We also conduct extensive experiments on popular datasets from the literature to show that studying monitors in the OOD setting can be misleading: 1. very good OOD results can give a false impression of safety, 2. comparison under the OOD setting does not allow identifying the best monitor to detect errors. Finally, we also show that removing erroneous training data samples helps to train better monitors.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
There is an increasing need in our society to achieve faster advances in Science to tackle urgent problems, such as climate changes, environmental hazards, sustainable energy systems, pandemics, among others. In certain domains like chemistry, scientific discovery carries the extra burden of assessing risks of the proposed novel solutions before moving to the experimental stage. Despite several recent advances in Machine Learning and AI to address some of these challenges, there is still a gap in technologies to support end-to-end discovery applications, integrating the myriad of available technologies into a coherent, orchestrated, yet flexible discovery process. Such applications need to handle complex knowledge management at scale, enabling knowledge consumption and production in a timely and efficient way for subject matter experts (SMEs). Furthermore, the discovery of novel functional materials strongly relies on the development of exploration strategies in the chemical space. For instance, generative models have gained attention within the scientific community due to their ability to generate enormous volumes of novel molecules across material domains. These models exhibit extreme creativity that often translates in low viability of the generated candidates. In this work, we propose a workbench framework that aims at enabling the human-AI co-creation to reduce the time until the first discovery and the opportunity costs involved. This framework relies on a knowledge base with domain and process knowledge, and user-interaction components to acquire knowledge and advise the SMEs. Currently,the framework supports four main activities: generative modeling, dataset triage, molecule adjudication, and risk assessment.
translated by 谷歌翻译
The goal of autonomous vehicles is to navigate public roads safely and comfortably. To enforce safety, traditional planning approaches rely on handcrafted rules to generate trajectories. Machine learning-based systems, on the other hand, scale with data and are able to learn more complex behaviors. However, they often ignore that agents and self-driving vehicle trajectory distributions can be leveraged to improve safety. In this paper, we propose modeling a distribution over multiple future trajectories for both the self-driving vehicle and other road agents, using a unified neural network architecture for prediction and planning. During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities. Our approach does not depend on any rule-based planners for trajectory generation or optimization, improves with more training data and is simple to implement. We extensively evaluate our method through a realistic simulator and show that the predicted trajectory distribution corresponds to different driving profiles. We also successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort. The code for training and testing our model on a public prediction dataset and the video of the road test are available at https://woven.mobi/safepathnet
translated by 谷歌翻译
农作物管理,包括氮(N)受精和灌溉管理,对农作物产量,经济利润和环境产生了重大影响。尽管存在管理指南,但要在特定的种植环境和农作物中找到最佳的管理实践是挑战。先前的工作使用加强学习(RL)和作物模拟器来解决该问题,但是训练有素的政策要么具有有限的性能,要么在现实世界中不可部署。在本文中,我们提出了一种智能作物管理系统,该系统通过RL,模仿学习(IL)同时优化N受精和灌溉,并使用农业技术决策系统(DSSAT)进行了作物模拟。我们首先使用Deep RL,尤其是Deep Q-Network来培训需要从模拟器中的所有状态信息作为观测值(表示为完整观察)的管理政策。然后,我们援引IL来培训管理政策,这些政策只需要有限的国家信息,这些信息可以通过模仿以前的RL训练有素的政策在全面观察中轻松获得的国家(表示为部分观察)。我们在佛罗里达州使用玉米的案例研究进行实验,并将受过训练的政策与玉米管理指南进行比较。我们在全面观察和部分观察中训练有素的政策取得了更好的结果,从而获得更高的利润或类似的利润,而环境影响较小。此外,部分观察管理政策在使用易于使用的信息时直接在现实世界中部署。
translated by 谷歌翻译
随着时间的流逝,肿瘤体积和肿瘤特征的变化是癌症治疗的重要生物标志物。在这种情况下,FDG-PET/CT扫描通常用于癌症的分期和重新分期,因为放射性标记的荧光脱氧葡萄糖在高代谢的地区进行了。不幸的是,这些具有高代谢的区域不是针对肿瘤的特异性,也可以代表正常功能器官,炎症或感染的生理吸收,在这些扫描中使详细且可靠的肿瘤分割成为一项苛刻的任务。 AUTOPET挑战赛解决了这一研究差距,该挑战提供了来自900名患者的FDG-PET/CT扫描的公共数据集,以鼓励该领域进一步改善。我们对这一挑战的贡献是由两个最先进的分割模型组成的合奏,即NN-UNET和SWIN UNETR,并以最大强度投影分类器的形式增强,该分类器的作用像是门控机制。如果它预测了病变的存在,则两种分割都是通过晚期融合方法组合的。我们的解决方案在我们的交叉验证中诊断出患有肺癌,黑色素瘤和淋巴瘤的患者的骰子得分为72.12 \%。代码:https://github.com/heiligerl/autopet_submission
translated by 谷歌翻译